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Least Squares Minimization

● Given a model and some data, we want to find the values of a set 
of parameters which minimize the difference between our model 
and our data.

● We will refer to our data vector as d and our model vector as m.
● These vectors contain the measured values and those predicted 

by the model respectively.
● We wish to minimize the Euclidean vector norm of their 

difference.
● r is the residual vector and it is a measure of the difference 

between the values predicted by our model and the observed 
values.

● It is important to note that in general m is a function of a number of 
parameters, such as (x

1
, x

2
, x

3
, ...). These parameters form the 

parameter vector x which is what we ultimately want to determine.
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Gauss-Newton

● δx is simply the update to the current best guess of the parameter 
vector.

● J is the Jacobian of the problem which we will discuss in detail 
shortly.

● (.)T denotes a matrix transpose, and (.)-1 denotes a matrix inverse.
● Gauss-Newton is an iterative algorithm which starts from some 

initial guess which is the updated in accordance with:
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Jacobian

● The Jacobian is simply a matrix of the first derivatives of the 
model term relative to the parameter vector.

● This can be written analytically for a model vector of length M and a 
parameter vector of length N as:

● This convention is somewhat unique to the radio interferometry 
problem. The Jacobian is usually defined as the derivative of the 
residual vector relative to the parameter vector. 
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Levenberg-Marquardt

● It is used more frequently as it has better convergence 
behaviour than basic Gauss-Newton.

● There is a degree of choice regarding the matrix D. However, in 
practice it is usually the identity matrix, I, or a matrix containing the 
diagonal entries of JTJ.

● The lambda factor is used to tune the algorithm and improve its 
convergence.
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x_new = leastsq(residual_func, x_0, args=(t, d))

scipy.optimize.leastsq

● scipy.optimize.leastsq – built in scipy least squares function 
that implements the Levenberg-Marquardt algorithm.

● residual_func – python function which computes r
i
 = d

i 
 - m

i
  

● x_0 – starting parameter vector.
● t – vector containing the sampling points.
● d – vector containing the observed values.
● x_new[0] – estimated parameter vector. 
● What happened to J? It is numerically determined inside leastsq.

Example: fit d
i
 to m

i
 = x

1
 sin(2πx

2
 t

i
 + x

3
)
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Example

Blue – observed data; Green – model evaluated at x_0

Blue – observed data; Green – model evaluated at x_new[0]
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Calibration

Interferometric data gets corrupted by environmental and instrumental effects. 
Calibration is the procedure by which we try to eliminate the errors induced
by the aforementioned effects.
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Unpolarized Calibration

● d
pq

(t) and m
pq

(t) denote the corrupted observed and model 

visibility at time t associated with baseline pq.
● the factors g

p
 and g

q
 denote the complex gain of antenna p and q.

● the term ε
pq

 is a zero mean (Gaussian) noise term, representing 

thermal noise

● Calibration entails finding the antenna gains which minimizes 
the difference between our observed and predicted 
visibilities.
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An equivalent matrix formulation

● D is the observed visibility matrix. Each entry, which we denote 
by d

pq
, represents the visibility measured by the baseline formed by 

antennas p and q.
● M is the model visibility matrix. The entry m

pq
 of M denotes a true 

or model visibility which was created with the calibration sky model 
and a uv-point on the uv-track associated with baseline pq.

● G =diag(g) is the antenna gain matrix, where g=[g
1
,g

2
,...,g

N
]T 

denotes the antenna gain vector. The vector g represents the 
instrumental response of the antennas, i.e. the complex antenna 
gains. 

● GMGH denotes the predicted visibilities.



NASSP 2016 12:34

Calibration: least squares problem
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Calibration: optimize.leastsq 

● First vectorize the real and imaginary part of D, i.e. construct d. 
● The vector m is generated in a similar manner.
● We then need to create a function err_func which calculates r = d 

– f(m,ğ). 
● Initialize ğ

0
 = [1,0]T.

● b_g = optimize.leastsq(err_func, b_g_0, args=(d, m)).
● Construct g = ğ

U
 + iğ

L
.

● We repeat the above for each time-slot.

NB Calibration is a complex problem:
● During calibration we split the problem into a real and imaginary 

part and then we optimize the real and imaginary parts of the 
parameter vector simultaneously. 

● The reason for this is that differentiation (needed to calculate the 
Jacobian) is in general not defined in complex space.
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Example: corrupted visibilities

Blue – true visibilities, Green – corrupted visibilities
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Example: corrected visibilities

Blue – true visibilities, Green – corrected visibilities
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StEFCal

● StEFCal is an alternating direction implicit method. It works by 
first solving GH with G held constant and then solving G with GH 
held constant. This is tantamount to linearising the calibration 
problem.

●  StEFCal lowers the execution time from order N3 to N2.
● As D-GMGH is Hermitian, the two steps are equivalent, which 

ultimately leads to the following update step:

● A
:,p 

denotes the pth column of A. 
● In practice we replace the gain solution of each even iteration by 

the average of the current gain solution and the gain solution of 
the previous odd iteration. 

● G0 = I
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1GC Calibration 

● 1GC is performed using calibrator observations.
● These are observations of a source with known parameters such 

as flux, shape and spectrum.
● Observations of calibrators are interspersed with observations of 

the target field.
● This is done so that the calibrator observations track changes in 

the observational parameters.
● Thus, it is possible to solve for calibrator gain solutions which can 

then be transferred to the target field.
● It is also possible to do more complicated solution transfers by 

interpolating between values or fitting curves across the 
solutions.

● This is usually an effective method of removing large-scale errors 
in the visibilities.

● 1GC can be performed by using the least-squares approach 
already discussed (or a simplified version of it if the calibrator field 
contains only one source).
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Calibration Quantities 

● Absolute flux calibration is used to determine the true flux of 
sources in the field.

● Bandpass calibration is used to correct for errors along the 
frequency axis of the observation.

● Delay calibration is used to remove the phase delay error which 
manifests as a linear ramp in the bandpass.

● Gain calibration is used to determine the complex valued gains. 
● In practice, absolute flux, delay, and bandpass calibration can 

all be performed using the same calibrator. Gain calibration could 
also be performed using this calibrator, but only if it was 
sufficiently close to the target. This is not usually the case and a 
unique calibrator is required for determining the complex gains.



NASSP 2016 19:34

Closure Quantities

 Phase Closure: Jennison (1958) 

Precursor of Calibration

 Amplitude Closure: Smith (1952) 
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2GC Calibration 

● After performing 1GC (applying the antenna gains from the 
calibrator to the target field) we should be able to make a decent 
image of our target field.

● The dynamic range of this image can be improved even further by 
using the self-calibration framework.

● Self-calibration can be regarded as a variant of the Gerchberg-
Saxton algorithm.

● Self-calibration makes use of the observed field to calibrate the 
visibilities.

● We continuously switch between two domains; the image domain 
and the visibility domain.

● In the image domain we perform deconvolution and source 
finding, while calibration takes place in the visibility domain.
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Self-Calibration Framework
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SelfCal Steps

1. We start by creating an incomplete initial sky-model of our target 
field (using a post-1GC image).
2. We use the initial/improved sky-model to calibrate our observed 
visibilities which are subsequently imaged.
3. We deconvolve the resulting image.
4.  We run a source finder on the deconvolved image to construct a 
more accurate sky model.
5. We return to step 2, or terminate the algorithm if the we have 
reached the target dynamic range or if further improvement is not 
possible.
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SelfCal Example: Cygnus A

Before SelfCal

After SelfCal

Data for this image of Cygnus A 
obtained at the VLA, Socorro, NM.

Observers: R.A. Perley, J. W. Dreher

Courtesy National Radio Astronomy 
Observatory/Associated Universities, 
Inc.

NRAO/AUI Information Services, 
Charlottesville, VA 22903; 804-296-
0211 

Copyright © 1995: Board of Trustees, 
University of Illinois
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Calibration algorithm?

● Up until this point we have not described the actual calibration 
algorithm one needs to use in the self-calibration framework.

● This is because the algorithm used is irrelevant in the context of 
the framework.

● However, it is useful to note that the (currently) most used 
algorithm is the least-squares approach we presented earlier.

● In the past self-calibration actually employed closure quantities.
● Back when closure quantities were used to implement the 

calibration sub-block in the self-calibration framework diagram; 
self-calibration was known by a different name: hybrid-mapping.

● Using a least-squares solver to calibrate was first proposed in 
Cornwill(1981).

● Another interesting concomitant of the least-squares approach is 
that it allows us to solve for individual antenna gains instead of 
baseline-based gains.
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Hybrid Mapping 

● The best known hybrid-mapping approach is discussed in 
Readhead and Wilkinson(1978):

1.If we have an N-element array, we obtain N-1 baseline phases 
from our initial/updated model visibilities.
2. The baseline phases are determined such that the closure-
phases are minimised.
3. After imaging the corrected visibilities, deconvolution is 
performed.
4. We update our sky-model based on the deconvolved image.
5. Return to step 1 or terminate if convergence has been reached.
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3GC Calibration

● The increased field-of-view of modern telescopes causes 
direction-dependent effects, such as the primary beam and 
pointing error, to become apparent.

● Therefore, we cannot only rely on using direction-independent 
self-calibration.

● There are, in principle, many approaches one can use to perform 
direction-dependent calibration.

● We will highlight a specific approach: differential gains.
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RIME

● This equation is known as the all-sky RIME, where V
pq

 is the 2 x 2 

correlation matrix measured by the interferometer and X
pq

 is the 2 

x 2 coherency matrix.
● Moreover, G

p
 and G

q
 are G-Jones antenna matrices. During 

calibration we estimate G
p
 and G

q
 which we subsequently use to 

correct the correlation matrix V
pq

.
● The subscripts p and q denote the antennas that were used to 

make the measurement.
● The right most equation implies that in the all-sky RIME we 

assume that the error that corrupts our visibilities is independent of 
the sources' positions.

WARNING:
POLARIZED
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Differential Gains

● Example: the primary beam of an instrument varies significantly 
over a large field-of-view (generally in time and frequency).

● In the case of the primary beam, we could try to model the 
direction dependent effect by adding an a-priori E-Jones matrix 
to our Jones' chain.

● However, if we do not have any information about the physical 
source that is responsible for a direction dependent effect then 
we could use the idea of differential gains instead.

● In addition to to the direction-independent gain we add a 
differential gain which can be different for each source.

● ΔE
sp

 and ΔE
sq

 are the differential gains associated with source s 

and antenna p and q respectively. Which can be obtained using 
least squares.
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Which sources need Δ gains?

● The sources which require a differential gain are usually 
surrounded by imaging artefacts (shown by the purple regions 
around the black sources in the figure). The yellow sources do not 
require a differential gain factor (no imaging artefacts around them).

● The further a source is from the field center, the more likely it is 
to be affected by a direction dependent effect.
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Δ Gains Example: 3C 147
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Physics-based and Heuristic-only

● 3GC can, in general, be divided into physics-based and heuristic-
only approaches.

● If we know the underlying physical phenomenon which is 
responsible for a specific direction-dependent effect, we may 
employ a physics-based calibration approach.

● This is usually accomplished by constructing a parametrized 
model based on the underlying physical phenomenon. The aim 
of this approach is to estimate the parameters of this model and 
use the results to correct our observed visibilities.

● In some cases, the direction-dependent phenomenon is known 
a-priori and we simply need to correctly incorporate it whilst 
calibrating.

● On the other end of the spectrum we have the heuristic-only 
approaches. In an heuristic approach we do not know the 
physical source of a specific direction-dependent effect. Instead, 
we introduce a number of free-parameters which we try to 
optimize based on some user-defined heuristic.
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Examples of each

● Pointing-selfcal: Bhatnagar(2004)
● Kalman filter: Tasse(2014)
● Primary beam: Mitra(2015)

● Peeling: Noordam(2004)
● Differential Gains: Smirnov(2011)

Physics-based

Heuristic-only
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Other solvers

● Eigendecomposition: Boonstra(2003)
● SAGEcal: Kazemi(2011)
● Robust calibration: Kazemi(2013)
● StEFCal: Salvini(2014)
● Riemann-Manifold: Yatawatta(2013) 
● Blind Calibration: Kazemi(2015)
● Complex Optimization: Smirnov(2015)
● Kalman filter: Tasse(2014)
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Summary

● We reviewed least squares minimization.
● We showed how calibration can be posed as a least squares 

problem.
● 1GC: Initial calibration with a calibrator.
● 2GC: Use the field which is being observed to calibrate the 

observation – also known as SelfCal.
● 3GC: Mitigate direction dependent effects.


